JOURNAL OF APPROXIMATION THEORY 42, 149-172 (1984)

Conditions for the Uniqueness of
Best Generalized Rational Chebyshev Approximation
to Differentiable and Analytic Functions

BRUNO BrOsoOwsKI*

Johann Wolfgang Goethe-Universitdt, Fachbereich Mathematik,
Robert-Mayer-Str. 6—10, D-6000 Frankfurt/M., West Germany

AND

CLAUDIA GUERREIRO'

Instituto de Matemadtica, Universidade Federal do Rio de Janeiro,
Caixa Postal 68530, 21944 Rio de Janeiro, Brasil

Communicated by Lothar Collatz

Received August 22, 1983

1. INTRODUCTION

In the paper [3], we used an optimization theoretical approach to show
that the generalized Haar condition is necessary and sufficient for the
uniqueness of the best generalized rational Chebyshev approximation to
functions defined on a compact Hausdorff space. This general approach
includes, in a unified way, weighted, one-sided, asymmetric, and also more
general Chebyshev approximation problems with side conditions. It has been
known for many years that, in the case of ordinary Chebyshev approx-
imation, best linear or rational approximation to differentiable functions can
be unique even when the generalized Haar-condition is not fulfilled. In 1956
Collatz [6] showed that in a strictly convex region of the plane, the linear
polynomial of best Chebyshev approximation to a function with continuous
first partial derivatives is unique. Four years later Rivlin and Shapiro [12]
generalized this result to linear polynomials in several variables and showed
that no extension to polynomials of degree higher than one is possible. These
results were not derived from a general uniqueness condition for the approx-
imation of differentiable functions and the authors used the special structure
of the space of linear polynomials. General uniqueness conditions were given
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by Garkavi [8] and later by Brosowski [1] for the case of linear approx-
imation to differentiable functions defined on a compact interval. These
conditions correspond to condition () (resp.(2)) in our main theorem.
These results were also extended to ordinary rational Chebyshev approx-
imation by Brosowski [1], Brosowski and Loeb [4], and Browoski and Stoer
[5]. The extension to manifolds was first considered by Muller [10], but his
results do not include the above-mentioned results.

In this paper we use the same optimization theoretical approach of [3] to
derive necessary and sufficient conditions for the uniqueness of best rational
Chebyshev approximation to differentiable and real analytic functions
defined on a compact differentiable manifold (resp. real analytic manifold).
As in [3], our results include, besides the ordinary Chebyshev approx-
imation, weighted, one-sided, asymmetric, and also general approximation
problems with side conditions. From our general uniqueness conditions we
derive the results of Collatz [6] and of Rivlin and Shapiro [12], and also
improvements of their results. Further, we show that certain subspaces of
quadratic polynomials always satisfy our uniqueness conditions.

It should be mentioned that there exist linear subspaces of C*(S) of
arbitrary high finite dimensions which satisfy the uniqueness condition when
S is a compact manifold of dimension 1. However, it is not known whether
the same is true when S has dimension >2.

Now we introduce the necessary definitions. The minimization problem we
will consider is:

Let § be a compact n-dimensional real manifold of class C*,
k€ NU {00, w}, where C denotes the analytic case. The manifold S can be
with or without boundary, that is, for each chart (W, ¢) the set W is mapped
homeomorphically onto an open subset of

R = {(y15 Y20 V) ER" [y, 2 0}

Define the compact Hausdorff space 7 := {—1, 1} X S. Let ¢, be any point
not in T and let T, denote the compact Hausdorff space TU {t,} with ¢, as
an isolated point.

Let {g,,&:»&} and {h, Ay, h,} be in C*S) and, for every
t=(n, s) € T, define the vectors

B(t) :=nB(s) 1= 1(g,(5), &5(5)se--» &1(5): 0, 0,..., 0),
Ct) == C(5):=1(0,0,..., 0, B, (8)y Ay (8)yeres B, (5))s
of R™ ™ 1In the following we will assume that the open convex set

U:= () {peR*™|(C(),v)> 0}

teT

is nonempty, where (-, -) denotes the usual inner product in R’*".
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Further let y: T— R be a nonnegative function such that y(1,-) and
y(—1, -) are in C*(S). For every (t,v,2) € T, X U X R with

U= (als Ayseees Apy BI’BZS"" ﬂm)’
we define

A, v,z) =z if t=¢,,

_(B@).v)
=)

Then for every x in C*(S), we consider the minimization problem
MPR(x):

—y(n,5)z if teT.

Minimize  p(v,z) =z subject to

YV A, s, v, z) <nx(s).

(n,8)€T

The problem MPR(x) is equivalent to certain rational Chebyshev approx-
imation problems. In fact, consider

_(Z%8ie ei)| y S a5 > 0]

V. B,
i=1Fi" €S i=1

If y(n,s)=cw(s) >0, then the problem MPR(x) is equivalent to the
problem of finding a best rational Chebyshev approximation to x from V
with weight function w, that is, (v, z,) € U X R with

Vo= (&g 5 gz seees Bops Bors Bozses Bom)

is a solution of MPR(x) iff

[s o] [e0)

where

_ Z§=1 Qo; &i
201 Boshy

If ¥(n, s) = (1 + m)/2) w(s) resp. ¥(n, s) = ((1 — 1)/2) w(s)), where w is a
strictly positive continuous function on S, we have one-sided best rational
Chebyshev approximation to x from

Ty
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Vai=lrev | V r(s)>x(s)
(resp. Vo=1{rev| Vv ris)<x(s) ),

with weight function w.

More generally, if y(1,5)=0 (resp. y(—1,s)=0) for some s, we obtain
r(s) < x(s) (resp. r(s) > x(s)).

If y(1,s)=7(—1,5)=0, then r(s)=x(s), that is, the problem MPR
includes also best Chebyshev approximation with interpolatory side con-
ditions.

For each r, € V define the linear subspace

L(r,) == {(B,v) — ro(C, v) € CK(S) | v E R'* ™).

Let {u,,u,,.., u,} be a basis for L(r,) and define the vectors of R7+!:

0 nu,(s)
0 nuy(s)
Dit)=1}4 : and D(¢):=D(n,s) = : if teT.
0 Mity(s)
1 =y, 5)

We say that a subset M c T is critical for r, iff
0 € con({D(t) E R [t E MU {tp})).

Let f€ C(S). A point s, € S will be called a special zero of f iff

(1) f(so)=0, and
(2) gradf(sy)=0, or s, €4S and dim 65 =0, or 5, € S, dim oS > 1,
and grad,g f(s,) =0,

where grad,gf(s,) denotes the gradient with respect to the boundary
manifold 6S. It is easy to see that this definition is independent of the chosen
chart (W, ¢). When no misunderstanding could arise we denote also in other
cases the grad fo ¢~ ' by grad /.

The main result of this paper is

THEOREM 1.1. Let S be an n-dimensional real compact manifold of class
CK ke NU {00, w}, and let y(1, -), (=1, -) € CX(S) be such that

YV y(—1,5)+y(1,5)> 0.

SES
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ASsume g, 8yyer 81s HysHyse By, belong to CX(S) and, hence, V < CX(S).
For each x in C*(S) there exists at most one best rational Chebyshev approx-
imation from V if and only if for each r, € V one of the following equivalent
conditions is satisfied:

(a) For each critical set M T for r, such that

('I’S)eMﬁ(—ﬂ,S)EM,

and for each f € L(r,)\|0} there exists a pair (1, s) € M, such that s is not a
special zero of f.

(B) For p=1,2,.,d we have: each element of a set of linearly
independent functions

fl ’fz’""fp € L(ro)

has at most (d — p) special zeros in the set

P
Z,= () {s€S|fi(s)=0}
i=1
(y) For each critical set M T for r, such that
(ﬂ,S)EMD (—U,S)@M,

and for each r € V, r #r,, there exists a pair (n,8) € M, such that s is not a
special zero of ¥ —r,.

In the case k=1 we assume for the necessity part that 6§ =@ or
dim § = 1. We do not know whether the theorem is true for the case k =1
without the restrictions mentioned.

2. UNIQUENESS CONDITIONS

In the case of best rational approximation to continuous functions the
Haar condition for the spaces L(r) is equivalent to the uniqueness. In [3] we
used implicitly that the Haar condition is equivalent to the following con-
dition:

(a,) For each critical set M < T for r, such that

(U’S)EMD(—'I, S)éM,

and for each f€ L(r,)\|0} there exists a pair (n,s) € M, such that s is not a
zero of f.

The Haar condition could also have been stated:

640/42/2-4
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B,) For p=1,2,..,d we have: p linearly independent functions can
have at most (d — p) common zeros in S.

In the case of differentiable functions we have

PROPOSITION 2.1. If L(r,) is contained in C'(S), then the conditions (a),
(8), and (y) of the theorem are equivalent.

Proof. (a)= (f). Assume there exists a set f,,f;,..,f, of linearly
independent functions in L(r,) and a function f;, 1 << p (we can assume
i=1) such that f; has g :=d —p+ 1 special zeros in Z,, say §;,S,,..., ;.
Consider the linear equations

d
2 avuu(src) =0,
v=1

k=1,2,.,q. This system has at least p linearly independent solutions;
consequently, the rank p of the matrix (u,(s,)) is less than or equal to

(d—p)
Since g=d—p+1>d—p>p, the vectors
u,(s;)
w; = uzgsj) y j=12,..4,
uy(s;)
are linearly dependent in RY. Thus, there exist a,, dy ..., a, € R, not all zero,
such that

L T
Jj=

N, =0.

_

Without loss of generality, we can assume o, # 0 and y(sgn a,, §;) > 0. Now
define

n=1 ifa; >0,
=—1 if a;<0.

Then there exist nonnegative 8, f,,..., 8, with 3 7_,8;= 1, such that

a q
.Zlﬂj”jwj=0 and Zl ﬁj?(”js sj)=ﬂ0’
j= J=

which imply

q

ﬂjD(tj) =0,

j=0
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where ¢; := (1;,5,), j = 1, 2,..., . Consequently, the set
M:={(n;,s)€T|j=1,2,.,q]
is critical for ry, has the property
(,5) EM = (—n,5) &€ M,

and all the points s,, 5,,..., 5, are special zeros of f;, contradicting (a).
(B)= (y). Assume there is a critical set M < T for ry such that
(n,s)E M= (—n,5) & M, and a rotational function
_(Bv)
(G

such that for all (1, s) € M the point s is a special zero of r —r,. We can
assume that M is finite, say

in  V\{r,l,

M =1{(11,5.), (M35 $3)peees (15 S}
Obviously, sy, s,,..., 5, are also zeros of the function

S=(B,v) —ry(C,v),

which is an element of L(r,)\{0}
Moreover, we have at the points s; the equations

(B, v) (C, v) grad(B, v) — (B, v) grad(C, v)
grad ((C, 0y 0) Coy? —grad r,
(C > [grad(B vy— ég ;grad<C vy—{C,v)grad ro}
(C o [grad(B v) —r,grad{C, v) — (C, v) grad rOJ
= ZC%IB grad f,

which prove that s, s,,..., 5, are also special zeros of f.
Since M is critical, the linear system

q

> Biufs) =0, i=1,2,.,d,

S
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has nontrivial solutions. Then the matrix (u,(s;)) has rank p < g — 1. Thus,
the transposed linear system

d
Z ajuj(s,-)ZO, i= 1’ 23"" q,
j=1
has at least p:=d —p linearly independent solutions f},f,,...,f,. We can
assume f; =f. Then
{12825 S5t C Z,,
and by (f) it follows that ¢ < d — p. Thus
p+1<qg<d—p=yp,
which is a contradiction.

(y)= (a). Assume, there is a critical subset M — T for

_ <§’ V)
T C v,y

such that (1, s) E M = (—n, s) € M, and a function f€ L(r,)\{0} such that
for all (1, s) € M the point s is a special zero of f. We can assume that M is
finite, say

M = {(11158,), (25 §2)» (145 5,)}-
The function f has a representation
f=(B,v)—r(C,v).
We choose 4 > 0 such that
vy i=v,+AvE U

The function B
- (B, v,)
' (C,vy)

belongs to ¥\ {r,} and the difference r, — r, has s, s,,..., 5, as special zeros,
which contradicts (y). §

We conclude this section with some examples.

EXAMPLE 2.2, Let L(r,) < C!(S) satisfy the Haar condition and let p
linearly independent functions f,,f;,...,f, in L(r,), 1 <p<d, be given. By
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the condition (f,), the set Z, contains at most (d — p) elements, hence, each
of the functions f}, f;,....f, can have at most (d — p) special zeros in Z,, that
is, the condition (f) is fulfilled.

There are linear spaces in C'(S), which do not satisfy the Haar condition
but satisfy the condition (#). A simple example is the linear subspace L in
C'[—4, 1] generated by the functions 1 and s”.

Before we present further examples, we give a characterization of the
special zeros in the boundary of n-dimensional compact manifolds in R”, We
have

LEMMA 2.3. Let S be an n-dimensional compact C'-manifold in R". 4
point s, €3S is a special zero of a function f€ C'(R") if and only if the
boundary oS and the set

I={yeR"|f(»)=0}

have a contact of order one in s, that is, they have in s, the same tangential
plane.

Proof. We show that grad f(s,) is orthogonal to the tangential plane of
oS in the point s,. To determine the tangential plane of &S in s,, choose a
chart (W, ¢) in 85 such that ¢(s,) := x, € R"~'. Then the tangential plane is
given by

a¢_l()‘7o) a0~ " (x,) a(/’Al(xo))

span( o, R

where d¢p ~'(x,)/0x, denotes the vector

v=12,...,n-—1.

(3(Pfl(x0) dp; (%) ‘9(0;1("0))
ox, ~ ox, "7 ox,

v

By its definition, a point s, € 45 is a special zero of f& C'(S) iff

df o ¢‘1(x0) _
ox -

14

0, v=1,2,.,n—1.

Using the chain rule, the last equations are equivalent to the equations

9p~ ' (x,) >=0’ ,

=12,.,n—1,
ox

<gradf(so),

v

that is, equivalent to I" and S have the same tangential plane in s,. [

EXAMPLE 2.4. Let S be an n-dimensional compact C'-manifold in R"
with the following property: If a hyperplane touches the boundary in g > 2
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points, then these points are not contained in a (g — 2)-dimensional plane of
R"”. We call such a manifold admissible. Examples of such manifolds are
strictly convex C'-manifolds and the union of two disjoint strictly convex
C'-manifolds.

Then the linear space L of all linear polynomials

ata y+a,y,++a,y,

satisfies the condition (f).

The space L has dimension d:=n+ 1. Choose pg<n+ 1 linearly
independent linear polynomials fi, f;,...,f,. Since the set Z, ,, is empty, we
have only to consider the case p < n. Assume there exists a function f;,
1 i< p (we can assume {=1), such that f, hasg:=d—p+1l=n—p+2
special zeros in Z,, say s, §,,..., ;. It is easy to see, that these zeros are in
0S. By Lemma 2.3, the hyperplane

H = {xeR"|fi(x)=0}

touches S in the points s,,$,,.,5,. On the other hand, the (n— p)-
dimensional set Z, contains the point s,, $,,..., 5,. This is impossible, since S
is an admissible manifold.

ExampLE 2.5. The preceding result does not extend to arbitrary
quadratic or higher degree polynomials as the following example shows. Let
S be an n-dimensional compact C'-manifold in R” and let

SO =a,+ ) a,»,
v=1

be a linear polynomial such that the hyperplane
Iy={yeR"|f(y)=0}

has a nonempty intersection with the interior of S. Then, the quadratic
polynomial 2 has infinitely many special zeros in S.

However, linear subspaces of quadratic polynomials can satisfy the
condition (f) for special manifolds. In fact, let L be the space of all
polynomials

Sy =a+a,y +a, ;4 a,(y1 +3)
and let S be the C'-manifold

2 2
Yi V2
Sp = eER LS+ 2%

E y | a2+b2

<l§, a#b.
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We show that each polynomial f'# 0 has at most two special zeros in S. If
a, =0, then, by Example 2.4, f has at most one special zero in 95, (strict
convexity of Sg). If @, # 0 and y, is a special zero of f in the interior of S,
then f has at the point y, its unique maximum or minimum. Thus, f cannot
be zero in any other point of S,. If y, is a special zero in the boundary, then
I'; and 05 have a first-order contact at y,. Since I'; is a circle, it can touch
0S8 in at most two points.

Next we show that L satisfies condition (#). We have only to consider the
cases of three and four linearly independent functions in L. It is easy to see
that Z, consists of at most one point and that Z, is empty.

It should be mentioned that strict convexity of .S is not sufficient for L to
satisfy condition (8) on S. For instance, let S be the unit circle in R?. Then
the polynomial

SuLy)=—14+y1+;

has all boundary points of S as special zeros.
A further example of a linear subspace of quadratic polynomials which
satisfies condition () in Sy is given by the polynomials

SOny)=a,+a,y, +a2y2+a3(yf—y§)+a4y,y2.

In this case each '+ 0 can have at most three special zeros (one in int S,
and two in dS;). To prove condition (#) one has to check only the cases of
5,4, and 3 linearly independent functions. Like before, we can show that
Z,=0@, #(Z,)< 1, and #(Z,) <K 2.

3. THE CONDITIONS ARE SUFFICIENT

The sufficiency part of the theorem follows from Proposition 2.1 and the
more general

THEOREM 3.1. Let S be an n-dimensional compact real manifold of class
CK, keNU {wo, w}, and let y(1,-), (=1, -) in C*(S) be such that

V y(1,5) +y(=1,5) > 0.

SES

Assume gy, 8yrs 81> Hyy hyr B, belong to CK(S) and, hence, V < CX(S).
Let x be in C*(S) such that u, = (vy, z,) and u, := (v,, z,) are minimal
points of MPR(x). If r, satisfies condition (y), then ry=r,.
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Proof. We can assume x € V. By Theorem 3.1 and Lemma 4.2 of [3],
the set

M = {(n,s) € T |nry(s) — y(n, s) 2, = nr,(s) — y(n, 8) z, = nx(s)}

is critical for r,. Moreover, (#,s) € M and (-, s) € M would imply

Y1, 8) 2o + ¥(—1,5) 2, = 0.

Since x & V, we have z,# 0 and, hence, y(#,s)+ y(—#,s) =0, which is
impossible.

Next we show that for each (#,s) € M the point s is a special zero for
r, —r,. By the definition of M we have r,(s) — r,(s) = O for every (1,5) € M.
Moreover, each of the functions

Ay i=nro—y(@, ) 2o — 1nx
and
4, =nr,—y®, ) zo—nx

has a maximum in s € W, for every (7,s) € M. Choose a chart (W, ¢) such
that s € W and let y := ¢(s). Then we have

04,097 orop! dyop!
. (»N=n 7. (») &, (»)
oxop!

—= T (=0,
. (»)

fori=0,1and v=1,2,..,n, if s is an interior point of § and v= 2, 3,..., n, if
s € 0S. These equations imply

ddy0 9~ d4,097"
) - (»)
o, %,
_{oryep! or,op™! _
=7 ( 7. ) - o, (y)) =0,

for v=1,2,.,n if s€int(S) and v=2,3,..,n, if s€IS. Hence, s is a
special zero of r, — r,. By condition (8) we have r,=r,.

ExampLE 3.2. Let S be the unit circle in R? and let L be the linear
space of all linear polynomials

at+a,y,+a),.
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By Example 2.4, L satisfies condition (§) on S. Consequently, there exists
a unique linear polynomial of best approximation to each x € C'(S).

In the case of ordinary best Chebyshev approximation this result is due to
Collatz [6], who proved it in a different way. The result we present here is
more general, since it includes also other types of Chebyshev approximation
like, for instance, one-sided and asymmetric approximation.

ExAMpPLE 3.3. Let S be an n-dimensional compact C'-manifold in R”
which is admissible in the sense of Example 2.4. Let L be the linear space of
all linear polynomials

a, + Z a,y,.
r=1
By Example 2.4, L satisfies condition (§) on S. So, there exists a unique
linear polynomial of best approximation to each x € C'(S).

In the case y(#, s) = 1 (ordinary Chebyshev approximation), this result is
essentially due to Rivlin and Shapiro [12], who proved it in a different way.
Like in the example before, our result includes other types of approximation
problems.

EXAMPLE 3.4. Let S, be the C'-manifold

2 2
;yew %+%<1€, a#b,

and let L, (resp. L,), denote the linear space of all polynomials
Gy +a, ¥, +ay ¥, + a3(yi + )
(resp. ag+ @, p, + a, , + ay(¥y7 —»3) + . p, yo)-
By Example 2.5, the spaces L, and L, satisfy condition (f) on S.. So,

there exists for each x € C'(S;) a unique best approximation from L, (resp.
from L,).

4. THE CONDITIONS ARE NECESSARY

The necessity part of the theorem follows from Proposition 2.1 and the
more general

THEOREM 4.1. Let S be an n-dimensional compact real manifold of class
C*, kE NU {0, w}, and let y(1, -), y(—1, -) in CX(S) be such that

Y y(1,5) +y(—1,5)> 0.

seS
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Assume g,, gy ves &1» Bys Hypeens By belong to CX(S) and, hence, V < C¥(S). In
the case k=1, we assume that 0S =@ or dim S = 1. If there is an ryEV
which does not satisfy condition (y), then we can find a function x € C*(S)
such that the problem MPR(x) has two minimal points (v,, z,) and (v,, z,)
with ro—r, #0.

The proof of this theorem is an immediate consequence of the next
lemmas. For the proof of the lemmas, we remark that there exist functions
x, =8-R, u=12,..,q,

of class C¥, k € N U {co, w}, such that the function
S D5 = (x,(5), X2(8)sees X, (5)) € R?

is of class C*X, k€ NU {oo, w}, injective and with Jacobians of rank n
(compare Hirsch [9]).

LEMMA 4.2. Let S be an n-dimensional real compact manifold of class
CY, kENU {0, w}. In the case k=1, we assume that 6S=@ or
dim S = 1. Let N S be a finite set and y,, y, € CX(S) be such that each
point of N is a special zero of v =y, —y,. Then there exists h € CX(S)
such that

Y h(s) > max{w,(s), y,(5)},
ses
and each point of N is a special zero of H— v, and H — y,.

For the proof see Section 5.

LEmMA 4.3. Let S be an n-dimensional real compact manifold of class
CK, kENU {c0, w} and let y(1, ), y(—1, ) in CX(S) be such that

v ¥(1,5)+(—1,5)>0.

SES
In the case k=1, we assume that 88 =@ or dim S = 1. Assume further,
81> 8aves 81> Mys My By, belong to CX(S) and, hence, V < C(S). Let v,,
v € U and M < T be finite such that for all (1, s) € M the point s is a special
zero of ro —r. If M is critical for r, and

(ﬂ,S)€M3 (—r],s)EM,

then there are x € CX(S) and z,€ R such that (v,,z,) and (v,z,) are
minimal points for MPR(x).
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Proof. We first show: If N < T is finite, (1, s) € N = (—1, 5s) € N, and for
each (7,s) €N the point s is a special zero of r,—r, then there are
x € C*(S) and z, € R such that

v A(ﬂ’ $, UO'! ZO) < ?]X(S),

(n,s)eT
A(ﬂ’ 8, U, ZO) < ﬂx(s),

and

Y A(’I, s, Z)O’ZO): Ux(s)-

(n,5)€N
By Lemma 4.2, there exist functions 4, f in C*(S) such that
h(s) > max|ro(s), 7(s)].
S(s) < minjry(s), r(s)],
and for all (5, s) € N, the point s is a special zero of
h—rq, h—r, S—rg, f—r

Further we define

._ h(s) —/(s)
Zo =& (1, 8) +y(—=1,8) 7

Let N*:={s€ S|(l,s)EN} and N™ :={sE€ S| (—1,5)EN}. We claim
that there exists a fuction g in C*(S) such that 0< g<1,g=11in N*, and
g=0inN".

For the proof we consider a function S 3 s (x,(5), X5(5),..., X,(5)) € R?
of class C* and injective. For constructing the function g, we define for each
point s, € N the function

q
I 2
D, (s)= ZI (els) — x(s,,))"
Py
For each point s, € N7, Ichoose a real number a, > 0 so small that

V 1—a,D,(s)>0,

seS

and define the function

Hs»ﬁ*sxo Dx(s)

F(8)=00-a,D,.(s) - ... Do)
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Then the function
2
I'(s):= [1 -y F,co(s)]
Seg€N~
has the following properties:
(i) Ven-I(s)=0;

(ii) each point s € N* is a strict local maximum of I and we have
I's)=1forseN*.
By (ii), there exists for each point s, € N* a neighborhood U;, of s, such
that

V Is)< L

sels,

Now consider the set

S, =

sES\ U U, | T(s) > IE.

SgEN T

If this set is empty, then we set g :=1T.
If not, then we can choose an # > 0 such that the function

0©:=(1-n T D)

s,eENt

is strictly positive in S. Since

sup Q(s) < 1,

se8,

the function

g(s) :=1I(s) - Q(s),

for p large enough, satisfies 0 g1, g=1inN* andg=0in N".
Then the function

x(s) = g(s)[h(s) — v(1,5) zo] + (1 — g&)f(s) + ¥(=1, 5) 2]

has the required properties.
For the other part of the proof, we can use the proof of |3, Lemma 5.3,
pp. 162-169] together with [3, Lemma 4.2]. [

A corollary of Theorem 4.1 is the following refinement of Theorem 3 of
Rivlin and Shapiro [12].
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CoroOLLARY 4.4, Let S be an n-dimensional compact manifold in R" of
class C*, k € NU {00, w} and let y(1, -), y(—1, ) be in C*(S) such that

Y y(—1,s)+ y(1,5)> 0.

seS

In the case k = 1, we assume that 0S = @ or dim s = 1. Assume further there
exists a hyperplane tangent to the boundary of S at p >3 distinct points,
which are contained in a (p — 2)-dimensional plane of R".

Then there exists a function x € C*(S), which has two best approximations
JSrom the linear space L of linear polynomials

n

a, + 2 a,y,.

r=1

If y(—1, -) and y(1, -) are constant functions and k +# 1, then the function x
can be chosen as the restriction of a real analytic function defined on R".

Proof. We denote by I, the hyperplane {y € R"|f(y)=0} tangent to
the boundary of S in the points of set

My = {5),5;5 8}

where f(y) :=ag+ 2.0_1 4, ),

By a theorem of Radon {7], the set M, is the union of two disjoint subsets
M, and M _, of M, such that the convex hull of M, and the convex hull of
M _, have a nonempty intersection. Then the set

M={ns)ET|seEM;=>n=1i}

is critical for the linear space L. By Lemma 2.3, each point of M, is a special
zero of the linear polynomial £, that is, f has special zeros for each s with
(n, s) in the critical set M. Then, by Theorem 4.1 and Proposition 2.1, there
exists a function x € C¥(S) such that x has two best approximations from L.

Now assume y(—1, 0) and y(1, 0) are constant and k # 1. In the proofs of
Lemma 4.2 and 4.3 we used for the construction of the above-mentioned
function x a mapping

S 35 (x,(5), X5(8)se.., X,4(5)) € R (1)

The constructed function x was then a polynomial in the functions
X1, X355 X4, and fo In the case of an n-dimensional manifold in R", we can
choose g =n and for the mapping (1) the identity map on S. Then the
construction leads to a polynomial in the coordinates y,,y,,...,y, which is
defined on R" and is, of course, analytic. [
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Remark. Rivlin and Shapiro [12] proved in the case k = 2, y(y,s) = |, and
p=n+ 1, the existence of a C®-function x defined on R".

5. PrROOF OF LEMMA 4.2

For the case k =1 we prove the lemma in a more general situation. We
will assume that one of the following conditions is satisfied:
(1) oS=g;
(2) dimS=1;
(3) éSNN=g;
(4) For each s € N we have grad y(s)=0.
These conditions can be used to generalize Theorem 4.1.

It suffices to prove the existence of a function P in C*(S) such that all
points in N are special zeros of P and

Y P(s) > max{y(s), 0}.
SES
Then H := P + w, has the required properties.
As in the remark after Theorem 4.1, consider a function

S D5 (x,(5), X(8)ses X4(5)) € RY

of class C*, injective, and with Jacobian of rank n. For constructing the
function P, we define for each point s, in N the function

Do) = Y (6,(6) — xu(s0)"

u=1

and the function

L&) =V +aiD. (&)} i k=1,

= a, w(s)+a, D) if k+#1,

where a, (resp. a, ), are real (resp. positive real) parameters, which will be
chosen later.

The functions J, are of class C*. Only the case k=1 needs a proof for
the points s € S, where y(s)? + aioon(S) =0, that is, for s=s, . First let s, |
be a point in S\2S and let (W, ¢) be a chart with s, € W and y, == o(s, ).
Then we have

Ko

oy

o, op~!
——()=0, v=12..n

v
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and for y +# y,, the estimate

o 00!
’—8y (y)‘

v

o~ ! 3DK00 -! > —
- | (b0 2 )+, D) = — ) VY L DL

v

<—V(@w oo /0y,)(») +ai(@D,,°0 /oy, )»),

v=1,2,..,n, which is an application of the Cauchy—Schwartz inequality.
This estimate shows that
-1

009
47
which proves the continuity of grad J, in s, € S\dS.
Now let s, be in S and let (W, ¢) be a chart such that s, € W and

¢(s.,) =0. Then the function J, o ¢~"' is in a neighborhood of zero the
restriction of the continuous function I, which is defined by

(»)-0  for y-y,,

v

L(P1sVass Vn) i =d 0 07 (1 Vo ) if y,>0,
=2, 000,50 ,)
:=—J»co°(OVI(_yl’yz’"-’yn) if y;<0.

This function is of class C'. This is obvious for the points y % 0. To prove
the continuity of grad I'(0) in y = 0, we observe that

-1
grad I'(0) = ( ’ f‘-"ayL ©)
1

.0,... 0).

Then, we define for each y € R” elements y and ¥ by setting

)71: (O’yz’yb'"’yn)
and
ﬁ:= (_yl’yZa---syn) if y1<09
=y if y, 20
Like in the case s, € S\2S, the use of the Cauchy-Schwartz inequality
yields the estimate
or ~ -
2| <2 V@ O + @D, o T

+ V(@ o 0~y )O) + ar (@D, 0" /oy, )F),
which proves the continuity of 8I'/dy, in the case oI(0)/dy, = 0.
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Consequently, J, is a C'-function in the case k = 1, provided one of the
conditions (1), (3) or (4) is satisfied. To prove the case of dim S =1, we
have only to consider (6I'/6y,)(0) # 0. Then we have

[wo o (D) - (wo o™ oy )(F) ]
ar) _ +ay D00 (D@D, 00 ' /2y)(9)]
s Voo () +a (D, o0 ()}

Dividing on the right-hand side numerator and denominator by y,, we obtain

3F(y)ﬂ|8wo<0*‘
a.)’1 3}11

for y— 0, which proves the continuity of dI'/dy, also in the case
or(0)/oy, # 0.
Consequently, J, is also a C !function in this case.

The a, are chosen as follows: let (W, ¢) be a chart with s, € W such that
Yo =9(s,,)- Then we set
a,, = sgn LAl (¥o)
Ky * ayl o/

We claim that we can choose real numbers a, so large that

Je,(5)>0 if s#s,, )
and that there exists a neighborhood U, of s, such that
VoI, (8) 2 w(s). 3)
SEU,,

Remark. Once we have proved this, then we can also choose the a, so
large, that for a suitable neighborhood U, (we can assume that this is the
same neighborhood as in (3)), we have

V YV Jls)>1
wFng €U,

The claims (2) and (3) are trivial for k=1 and the claim (2) is also for
k+ 1 and grad J, (s,.,) = 0.

Assume now k# 1 and consider for the real numbers f=a, (resp.
B=a, — 1) the matrix

a 8x ° (p - ox, 00!
Co(B) == ( Z (¥o) - M@y (o)
yoop ! )
_ s =1,2,...,n, =1, 2,...,n
+4 2y oy, (¥e) v n, o n
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The matrix

(& ox, 007! ox, 00! )
(3 o0 5t o).

v=12,..n o=12,..,n,

is positive definite, since B, can be written as a product 4,. A;, where 4, is
the Jacobian matrix

a —1
<x °9 (y0)> v=1,2,.,n, u=12,..,4q,

which has rank n. We can choose a, so large, that the matrix C, (B) is
positive definite for both values of 8. To prove the claims (2) and (3) in the
case grad J, (s, ) # 0, we consider the second-order Taylor expansion of J
(resp. J,,— w) at the point 5,
. oyop”!
o0 (¥)= BT r— ©)| », + (¥ Cola,) ¥) + o(| ¥II*)
(resp.

Jxoow”(y)—woqo-'(y)=Ha“’ ¢ '(0)\ 224 l(O)]yl

+(» Cola,,— ) y) + O(H yllz)),

where we can assume y, = 0. Since the matrices Cy(a, ) and Cy(a, — 1) are
positive definite, there exists a neighborhood U, of s, such that

Vo I 6)>0

SEU, s,
and

V T (8)—wl(s)>0

sely,
Consider the set §, := S\U, and let

E, = max|a, y(s) and  Dy:=minD,(s)>0.
sES, SES, 0

Then we have for all a, > E,/D, and for all s € §, the estimate
axoD:co(s) + axou/(s) > DOa'co - EO > 0’

which proves the claims in the case grad w(s, ) # 0.

640/42/2-5
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To prove the claim (3) in the case grad J, (s, ) =0, we consider second-
order Taylor expansion of J, — v at the point s, :

Jeo 0 () —woo(»)
=Y —Yos Cola,, — Dy =ye)) + ol y = ol1*)

Since the matrix Cy(a,,— 1) is positive definite, there exists a neighborhood
U,,of s, such that

¥V J(8) —w(s) >0

SEU,

Now define for each 5 > 0 the function
K
Gy(s):=b [] J.(s),
k=1

where K := #N. The function G, is of class C* and has the property

G,(s)=0 if s=s,,
>0 if s#s,.

Next we will show that there is a real number b > 0 such that
YV Gy(s) 2> w(s)
SES

If not, then there exist sequences (b;) < R and (s,) = S such that

b;— and Sp,= Sos

and such that
YV 1<b;<byy, and G, (s,) < w(sy).
jeN
We claim that s, is different from s,, ¥ = 1, 2,..., K. By claim (3) and by
the remark after it, there is for each s, in N a neighborhood U, such that
YV J () —w(s) 20,
seU,c0

and such that all functions J, with k # x, satisfy in U, the estimate J, > 1.
Then we have in U, the estimate

Gi(s)—y(s) = U J(8) —w(s) 2 J, (s) —w(s) > 0.
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Assume now that s,=s, . Then we have Sp, € U,, for j large enough.
Consequently, we have

0> G,(sy) — wiss)
2 G (sp) —w(sy) 20,

which is a contradiction.
Consequently, there exists a compact neighborhood U, of s, and real
number ¢ such that

Y G(s)=a>0.

sely

For j sufficiently large we have 5, € U, and

b;ja > max y(s);
sely

then we have

Gy ($p,) > b > max y(s)

sely

> W(sbj) > Gb.f(sbj)’
which is a contradiction.
Consequently, there exists a nonnegative number b such that

V P(s) = Gy(s) 2 y(s);

ses

since G,(s) = 0, we have also P(s) > 0 for all s € S. It is easy to see, that P
has the points of N as special zeros, which completes the proof.
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