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I. INTRODUCTION

In the paper [3], we used an optimization theoretical approach to show
that the generalized Haar condition is necessary and sufficient for the
uniqueness of the best generalized rational Chebyshev approximation to
functions defined on a compact Hausdorff space. This general approach
includes, in a unified way, weighted, one-sided, asymmetric, and also more
general Chebyshev approximation problems with side conditions. It has been
known for many years that, in the case of ordinary Chebyshev approx­
imation, best linear or rational approximation to differentiable functions can
be unique even when the generalized Haar-condition is not fulfilled. In 1956
Collatz [6] showed that in a strictly convex region of the plane, the linear
polynomial of best Chebyshev approximation to a function with continuous
first partial derivatives is unique. Four years later Rivlin and Shapiro [12]
generalized this result to linear polynomials in several variables and showed
that no extension to polynomials of degree higher than one is possible. These
results were not derived from a general uniqueness condition for the approx­
imation of differentiable functions and the authors used the special structure
of the space of linear polynomials. General uniqueness conditions were given

* Partially supported by Financiadora de Estudos e Projetos (FINEP). Brasil.
t Partially supported by Conselho Nacional de Pesquisas (CNPq), Brasil.

149
0021-9045/84 $3.00

Copyright © 1984 hy Academic Press. Inc.
All rights of reproduction in any form reserved.



150 BROSOWSKI AND GUERREIRO

by Garkavi [8] and later by Brosowski [1] for the case of linear approx­
imation to differentiable functions defined on a compact interval. These
conditions correspond to condition (fJ) (resp. (a)) in our main theorem.
These results were also extended to ordinary rational Chebyshev approx­
imation by Brosowski [1], Brosowski and Loeb [4], and Browoski and Stoer
[5]. The extension to manifolds was first considered by Muller [10], but his
results do not include the above-mentioned results.

In this paper we use the same optimization theoretical approach of [3] to
derive necessary and sufficient conditions for the uniqueness of best rational
Chebyshev approximation to differentiable and real analytic functions
defined on a compact differentiable manifold (resp. real analytic manifold).
As in [3 J, our results include, besides the ordinary Chebyshev approx­
imation, weighted, one-sided, asymmetric, and also general approximation
problems with side conditions. From our general uniqueness conditions we
derive the results of Collatz [6] and of Rivlin and Shapiro [12], and also
improvements of their results. Further, we show that certain subspaces of
quadratic polynomials always satisfy our uniqueness conditions.

It should be mentioned that there exist linear subspaces of Ck(S) of
arbitrary high finite dimensions which satisfy the uniqueness condition when
S is a compact manifold of dimension 1. However, it is not known whether
the same is true when S has dimension ?2.

Now we introduce the necessary definitions. The minimization problem we
will consider is:

Let S be a compact n-dimensional real manifold of class Ck
,

kErN U {oo, w}, where CW denotes the analytic case. The manifold S can be
with or without boundary, that is, for each chart (W, qJ) the set W is mapped
homeomorphically onto an open subset of

IR~:= {(Yl'Yz, ... ,Yn)E IR n IYl ?O}.

Define the compact Hausdorff space T:= {-I, I} X S. Let to be any point
not in T and let To denote the compact Hausdorff space TU {to} with to as
an isolated point.

Let {gl'gz, ...,gtl and {hI' hz,·.. , hm} be in Ck(S) and, for every
t = (11, s) E T, define the vectors

B(t) := l1B(s):= l1(gj(s), gz(s), ... , gl(S), 0, 0,..., 0),

C(t):= C(s):= (0,0,... ,0, hj(s), h2(s), ..., hm(s)),

of IR 1+ m. In the following we will assume that the open convex set

U:= n {v E IR I + m I (C(t), v) > O}
leT

is nonempty, where (., .) denotes the usual inner product in IR I + m
•
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Further let y: T -+ IR be a nonnegative function such that y(I,.) and
y(-I,·) are in Ck(S). For every (t, v,z) E To X UX IR with

we define

A(t, v, z) := z

(B(t), v)
:= (C(t), v) - Y(I1, s) z

if t = to,

if t E T.

Then for every x in Ck(S), we consider the minimization problem
MPR(x):

Minimize p(v, z) := z subject to

V A (11, s, v, z) ~ I1X(S).
(7J,s)eT

The problem MPR(x) is equivalent to certain rational Chebyshev approx­
imation problems. In fact, consider

1
", 1

m !L..j=1 U j g,
V:= L~ {J.h. E C(S) v?. {J, hj(s) > 0 .

1=1 1 1 seS 1=1

If Y(I1, s) = w(s) > 0, then the problem MPR(x) is equivalent to the
problem of finding a best rational Chebyshev approximation to x from V
with weight function w, that is, (vo' zo) E U X IR with

is a soiution of MPR(x) iff

where

If Y(I1, s) = «1 + 11)/2) w(s) resp. Y(I1, s) = «1 -11)/2) w(s», where w is a
strictly positive continuous function on S, we have one-sided best rational
Chebyshev approximation to x from
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v+:= jrE V I s~S r(s)~x(S)~

(resp. V-:= )rE V I s~S r(s)~x(S)()'

with weight function w.
More generally, if y(1, s) = 0 (resp. y(-I, s) = 0) for some s, we obtain

r(s) ~ x(s) (resp. r(s) ~ x(s».
If y(1, s) = y(-1, s) = 0, then r(s) = x(s), that is, the problem MPR

includes also best Chebyshev approximation with interpolatory side con­
ditions.

For each roE V define the linear subspace

Let {u l' U z,..., ud } be a basis for L(r0) and define the vectors of IR d +1:

o
o

and D(t):= D(1], s) :=

o
1

YfuAs)

-y(Yf, s)

if tE T.

We say that a subset MeT is critical for ro iff

oE con(lD(t) E IR d + 1 It EMU lto} D.

Let fE e1(S). A point So E S will be called a special zero off iff

(1) f(so) = 0, and

(2) gradf(so) = 0, or So E as and dim as = 0, or So E as, dim as ~ 1,
and gradosf(so) = 0,

where gradosf(so) denotes the gradient with respect to the boundary
manifold as. It is easy to see that this definition is independent of the chosen
chart (W, qJ). When no misunderstanding could arise we denote also in other
cases the grad f 0 qJ - 1 by grad!

The main result of this paper is

THEOREM 1.1. Let S be an n-dimensional real compact manifold ofclass
e\ k E IN U {oo, w}, and let y(I, '), y(-I, .) E ekeS) be such that

V y(-l, s) + y(l, s) > O.
SES
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Assume gl'g2,... ,gp hl'h2,... ,hm belong to Ck(S) and, hence, VcCk(S).
For each x in Ck(S) there exists at most one best rational Chebyshev approx­
imation from V if and only iffor each roE V one of the following equivalent
conditions is satisfied:

(a) For each critical set MeT for ro such that

(11, s) E M ~ (-11, s) E M,

and for eachfE L(ro)\ {Of there exists a pair (11, s) E M, such that s is not a
special zero of!

(fJ) For p = 1,2,... , d we have: each element of a set of linearly
independent functions

has at most (d - p) special zeros in the set

p

Zp := n {s E S I/;(s) = Of.
i~l

(y) For each critical set MeT for ro such that

and for each rEV, r *' r0' there exists a pair (11, s) E M, such that s is not a
special zero of r - ro'

In the case k = 1 we assume for the necessity part that as = 0 or
dim S = 1. We do not know whether the theorem is true for the case k = 1
without the restrictions mentioned.

2. UNIQUENESS CONDITIONS

In the case of best rational approximation to continuous functions the
Haar condition for the spaces L(r) is equivalent to the uniqueness. In [31 we
used implicitly that the Haar condition is equivalent to the following con­
dition:

(a o) For each critical set MeT for ro such that

(11, s) E M ~ (-11, s) E M,

andfor eachfE L(ro)\ {Of there exists a pair (11, s) E M, such that s is not a
zero of!

The Haar condition could also have been stated:

640/42/2-4
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(/30) For p = 1,2,... , d we have: p linearly independent functions can
have at most (d - p) common zeros in S.

In the case of differentiable functions we have

PROPOSITION 2.1. IfL(r0) is contained in C I(S), then the conditions (a),
(/3), and (y) of the theorem are equivalent.

Proof (a) => (/3). Assume there exists a set fl,Jz, ... ,Jp of linearly
independent functions in L (r0) and a function fi, 1~ i ~P (we can assume
i= 1) such thatfl has q :=d-p+ 1 special zeros in Zp, say sl,sz,...,Sq.
Consider the linear equations

d

L aVuV(sK) = 0,
v=1

K = 1,2,... , q. This system has at least p linearly independent solutions;
consequently, the rank p of the matrix (UV(SK)) is less than or equal to
(d - p).

Since q = d - p + 1 >d - p ~ p, the vectors

(

UI(Sj))
uz<Sj)

wj := . '

uAsj )

j=1,2,...,q,

are linearly dependent in IRd. Thus, there exist a p a z,..., a q E IR, not all zero,
such that

q

L ajwj=O.
j=1

Without loss of generality, we can assume a l *- 0 and y(sgn a p SI) > O. Now
define

'lj := 1

:=-1

if aj ~ 0,

if a j < O.

Then there exist nonnegative flo,/Jp ...,flq with L:..J=oflj = 1, such that

which imply

q

L flj'ljwj = 0
j=1

and
q

L fljY('lj, Sj) = flo,
j=1

q

L fljD(tj) = 0,
j=O
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where tj := (l1j, Sj), j = 1,2,..., q. Consequently, the set

is critical for r0' has the property

(11, s) EM=> (-11, s) E M,

155

and all the points sl'sz,...,Sq are special zeros offl' contradicting (a).

(fJ) => (y). Assume there is a critical set MeT for ro such that
(11, s) EM:::> (-11, s) E M, and a rotational function

(ii, v)
r=--

(C, v)
in V\{ro},

such that for all (11, s) E M the point S is a special zero of r - roo We can
assume that M is finite, say

Obviously, SI' SZ,..., Sq are also zeros of the function

f= (ii, v) - ro(C, v),

which is an element of L(ro)\{O}.
Moreover, we have at the points Sj the equations

d (
ii, v) _) _ (C, v) grad(ii, v) - (ii, v) grad(C, v) _

gra (C, v) ro - (C, v)z grad ro

1 [ - (ii, v) ]
= (C, v) grad(B,v)- (C, v) grad(C,v)-(C,v) grad ro

= (C~ v) [grad(ii, v) - ro grad(C, v) - (C, v) grad roJ

1
= (C, v) grad/,

which prove that Sl' Sz,..., Sq are also special zeros off
Since M is critical, the linear system

q

)' fJ·u.(s.) = 0,
~ J l J
j~l

i = 1,2,..., d,
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has nontrivial solutions. Then the matrix (ui(Sj)) has rank p ~ q - 1. Thus,
the transposed linear system

d

L: ajuisJ = 0,
j=1

i= 1,2,... , q,

has at least p := d - p linearly independent solutions /1,12 ,...,fp' We can
assume II = f Then

and by (j3) it follows that q ~ d - p. Thus

p + 1~ q ~ d - p = p,

which is a contradiction.

(y) => (a). Assume, there is a critical subset MeT for

<ii, vo)
ro= ,

<C, vo)

such that (fI, s) EM=> (-fl, s) (j: M, and a function IE L(r0)\ {o} such that
for all (fI, s) E M the point s is a special zero off We can assume that M is
finite, say

The function I has a representation

1= <ii, v) - ro<C, v).

We choose A>°such that

The function

belongs to V\ {ro} and the difference r1 - rohas SI' S2"'" Sq as special zeros,
which contradicts (y). I

We conclude this section with some examples.

EXAMPLE 2.2. Let L(ro) c C 1(S) satisfy the Haar condition and let p
linearly independent functions 11'/2'''',fP in L(ro)' 1~p ~ d, be given. By
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the condition (flo), the set Zp contains at most (d - p) elements, hence, each
of the functionsfl ,fz,...,fp can have at most (d - p) special zeros in Zp' that
is, the condition (fl) is fulfilled.

There are linear spaces in CI(S), which do not satisfy the Haar condition
but satisfy the condition (fl). A simple example is the linear subspace L in
C I[-!, 1] generated by the functions 1 and sZ.

Before we present further examples, we give a characterization of the
special zeros in the boundary of n-dimensional compact manifolds in IR n

• We
have

LEMMA 2.3. Let S be an n-dimensional compact CI-manifold in IR n. A
point So E as is a special zero of a function fE C1(lR n

) if and only if the
boundary as and the set

r:= {y E IR n If(y) = 01

have a contact of order one in so, that is, they have in So the same tangential
plane.

Proof We show that gradf(so) is orthogonal to the tangential plane of
as in the point so' To determine the tangential plane of as in so, choose a
chart (W, qJ) in as such that qJ(so) := XoE IR n-I. Then the tangential plane is
given by

where oqJ -I (xo)!oxv denotes the vector

(.
OqJil(XO) , OqJ2

1
(XO) , ... , OqJ;I(XO»),

oXv oXv oXv

v = 1, 2,..., n - 1.

By its definition, a point So E as is a special zero of fE CI(S) itT

ofo qJ-I(XO) = 0,

oXv

v = 1, 2,... , n - 1.

Using the chain rule, the last equations are equivalent to the equations

v = 1,2,..., n - 1,

that is, equivalent to r and oS have the same tangential plan"e in so' I

EXAMPLE 2.4. Let S be an n-dimensional compact C1-manifold in IR n

with the following property: If a hyperplane touches the boundary in q ~ 2
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points, then these points are not contained in a (q - 2)-dimensional plane of
IW. We call such a manifold admissible. Examples of such manifolds are
strictly convex C I-manifolds and the union of two disjoint strictly convex
CI-manifolds.

Then the linear space L of all linear polynomials

satisfies the condition (fJ).
The space L has dimension d:= n + 1. Choose p <n + 1 linearly

independent linear polynomials fl,f2 ,...,fp. Since the set Z n + I is empty, we
have only to consider the case p <n. Assume there exists a function /;,
1<i <P (we can assume i = 1), such that fl has q := d - p + 1 = n - p + 2
special zeros in Z p' say Sl' S2, ••• , Sq. It is easy to see, that these zeros are in
as. By Lemma 2.3, the hyperplane

touches as in the points Sl' S2 , ••• , Sq. On the other hand, the (n - p)­
dimensional set Zp contains the point SI' S2'••• ' Sq. This is iLlpossible, since S
is an admissible manifold.

EXAMPLE 2.5. The preceding result does not extend to arbitrary
quadratic or higher degree polynomials as the following example shows. Let
S be an n-dimensional compact CI-manifold in IR n and let

n

fey) = Qo + L Q vYv
v=l

be a linear polynomial such that the hyperplane

has a nonempty intersection with the interior of S. Then, the quadratic
polynomial f2 has infinitely many special zeros in S.

However, linear subspaces of quadratic polynomials can satisfy the
condition (fJ) for special manifolds. In fact, let L be the space of all
polynomials

and let SE be the CI-manifold

SE := !y E1R211 ~~ + ~~ < I!, Q*b.
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We show that each polynomialf:;i: 0 has at most two special zeros in S. If
a3 = 0, then, by Example 2.4, f has at most one special zero in oS£ (strict
convexity of S£). If a3 :;i: 0 and Yo is a special zero off in the interior of S£'
then f has at the point Yo its unique maximum or minimum. Thus, f cannot
be zero in any other point of S£. If Yo is a special zero in the boundary, then
rf and OS£ have a first-order contact at Yo' Since Ff is a circle, it can touch
oS£ in at most two points.

Next we show that L satisfies condition (fJ). We have only to consider the
cases of three and four linearly independent functions in L. It is easy to see
that Z3 consists of at most one point and that Z4 is empty.

It should be mentioned that strict convexity of S is not sufficient for L to
satisfy condition (fJ) on S. For instance, let S be the unit circle in IR z• Then
the polynomial

has all boundary points of S as special zeros.
A further example of a linear subspace of quadratic polynomials which

satisfies condition (fJ) in S£ is given by the polynomials

In this case each f:;i: 0 can have at most three special zeros (one in int S£

and two in 8S£). To prove condition (fJ) one has to check only the cases of
5, 4, and 3 linearly independent functions. Like before, we can show that
Z5 = 0, #(Z4) ~ 1, and #(Z3) ~ 2.

3. THE CONDITIONS ARE SUFFICIENT

The sufficiency part of the theorem follows from Proposition 2.1 and the
more general

THEOREM 3.1. Let S be an n-dimensional compact real manifold of class
Ck, kE IN U {oo,w}, and let y(l, .), y(-I,·) in Ck(S) be such that

V y(1, s) + y(-l, s) > O.
seS

Assume gpgz,... ,gp hphz,...,hm , belong to Ck(S) and, hence, VcCk(S).
Let x be in Ck(S) such that Uo := (vo, zo) and UI := (v p zo) are minimal
points of MPR(x). If ro satisfies condition (y), then ro= r l .
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Proof We can assume xE V. By Theorem 3.1 and Lemma 4.2 of [3],
the set

is critical for ro' Moreover, (17, s) E M and (-17, s) E M would imply

Since x E V, we have Zo =1= 0 and, hence, Y(17, s) +Y(-17, s) = 0, which is
impossible.

Next we show that for each (17, s) E M the point s is a special zero for
r l - ro' By the definition of M we have r)(s) - roes) = 0 for every (17, s) E M.
Moreover, each of the functions

and

has a maximum in sEW, for every (17, s) E M. Choose a chart (W, qJ) such
that sEW and let Y := qJ(s). Then we have

0.1 i 0 qJ -) () ori 0 qJ -I () oy 0 qJ - 1 ( )
Y =17 Y - Y

oYv oYv oYv

_ ox 0 qJ -I (y) = 0,
oYv

for i = 0, 1 and v = 1,2,... , n, if s is an interior point of S and v= 2, 3,..., n, if
sEaS. These equations imply

for v = 1, 2,..., n, if s E int(S) and v = 2, 3,..., n, if sEaS. Hence, s is a
special zero of r0 - r). By condition (ft) we have r0 = r) . I

EXAMPLE 3.2. Let S be the unit circle in IR 2 and let L be the linear
space of all linear polynomials
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By Example 2.4, L satisfies condition (/3) on S. Consequently, there exists
a unique linear polynomial of best approximation to each x E C'(S).

In the case of ordinary best Chebyshev approximation this result is due to
Collatz [6], who proved it in a different way. The result we present here is
more general, since it includes also other types of Chebyshev approximation
like, for instance, one-sided and asymmetric approximation.

EXAMPLE 3.3. Let S be an n-dimensional compact C1-manifold in IW
which is admissible in the sense of Example 2.4. Let L be the linear space of
all linear polynomials

n
'\~

ao+ .:... a"Yv '
p=l

By Example 2.4, L satisfies condition (/3) on S. So, there exists a unique
linear polynomial of best approximation to each x E C1(S).

In the case y('7, s) = 1 (ordinary Chebyshev approximation), this result is
essentially due to Rivlin and Shapiro [12], who proved it in a different way.
Like in the example before, our result includes other types of approximation
problems.

EXAMPLE 3.4. Let SE be the C1-manifold

a=t=b,

and let L 1 (resp. L 2), denote the linear space of all polynomials

ao+a 1 Yl + a2Y2 +a3(yi +yD
(resp. ao+a 1Yl +a2Y2 +a3(yi - yD +a4 Yl Y2)'

By Example 2.5, the spaces L 1 and L 2 satisfy condition (fJ) on SE' So,
there exists for each x E C1(SE) a unique best approximation from L 1 (resp.
from L 2).

4. THE CONDITIONS ARE NECESSARY

The necessity part of the theorem follows from Proposition 2.1 and the
more general

THEOREM 4.1. Let S be an n-dimensional compact real manifold of class
C\ k E IN U {oo, w}, and let y(1, .), y(-I, .) in Ck(S) be such that

v y(1, s) + y(-I, s) > O.
seS
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Assume gp gz,"" g/, hI' hz,"" hm , belong to ekeS) and, hence, V c ekes). In
the case k = 1, we assume that as = 0 or dim S = 1. If there is an roE V
which does not satisfy condition (y), then we can find a function x E ekeS)
such that the problem MPR(x) has two minimal points (v o' zo) and (VI' zo)
with r0 - r I *" O.

The proof of this theorem is an immediate consequence of the next
lemmas. For the proof of the lemmas, we remark that there exist functions

xl':= S~ IR, f.l = 1, 2,...,q,

of class ek, k E IN U {oo, w}, such that the function

S :3 s ~ (xl(s), xz(s), ..., xq(s» E IRq

is of class ek, k E IN U {oo, w}, injective and with Jacobians of rank n
(compare Hirsch [9]).

LEMMA 4.2. Let S be an n-dimensional real compact manifold of class
ek, kEINU{oo,w}. In the case k=I, we assume that as=0 or
dim S = 1. Let N c S be a finite set and lfIl' lfIz E ekeS) be such that each
point of N is {l special zero of lfI:= lfIl -lfiz. Then there exists hE ekeS)
such that

V h(s) ~ max{lfIl(s), lfIz(S)},
seS

and each point of N is a special zero of H - lfIl and H - lfIz·

For the proof see Section 5.

LEMMA 4.3. Let S be an n-dimensional real compact manifold of class
ek, k E IN U {oo, w} and let y( 1, '), y(-1, .) in ekeS) be such that

V y(I, s) +y(-I, s) > O.
seS

In the case k = 1, we assume that as = 0 or dim S = 1. Assume further,
gpgz,...,g/, hphz,... ,hm , belong to ekeS) and, hence, Vcek(S). Let vo'
V E U and MeT be finite such that for all (17, s) EM the point s is a special
zero of r0 - r. If M is critical for r0 and

(17, s) EM=? (-Y/, s) E M,

then there are x E ekeS) and Zo E IR such that (vo' zo) and (v, zo) are
minimal points for MPR(x).
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Proof We first show: If NeT is finite, (11, s) EN=> (-11, s) (/; N, and for
each (11, s) E N the point s is a special zero of ro- r, then there are
x E ekeS) and Zo E IR such that

V A (11, s, vo' zo) ~ 11X(S),
(".s)ET

A (11, s, v, zo) ~ 11X(S),

and

V A(11,S, vo,zo)= 11X(S).
(".SlEN

By Lemma 4.2, there exist functions h,j in ekeS) such that

h(s) ~ max[ro(s), res)],

J(s) ~ min[ro(s), res)],

and for all (11, s) E N, the point s is a special zero of

Further we define

h -r, J-r.

h(s) - I(s)
Zo:= max ~O.

S E S y( 1, s) + y(-1, s)

Let N+ := {s E S 1(1, s) E N} and N- := {s E S 1(-1, s) EN}. We claim
that there exists a fuction g in ekeS) such that 0 ~ g ~ I, g == I in N+, and
g==O inN-.

For the proof we consider a function S:3 s H (x1(s), xis),..., xq(s)) E IRq
of class ek and injective. For constructing the function g, we define for each
point SKO E N the function

q

DKO(s):= I (x(S)-X(SKO»2.
1'=1

For each point SKO E N-, lchoose a real number aKO > 0 so small that

V 1 - aKoDKO(s) > 0,
SES

and define the function
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Then the function
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has the following properties:

(i) VSEN-F(s) = 0;

(ii) each point s E N+ is a strict local maximum of F and we have
F(s) = 1 for s E N+.

By (ii), there exists for each point So E N+ a neighborhood Uso of So such
that

V F(s)~ 1.
SEU,O

Now consider the set

SI:= ISES \ U Uso IF(s) > 11.
? soEN+ ~

If this set is empty, then we set g := F.
If not, then we can choose an " > 0 such that the function

is strictly positive in S. Since

sup Q(s) < I,
SES,

the function

g(s) := F(s) . Q(sY,

for p large enough, satisfies 0 ~ g ~ 1, g == 1 in N+ and g == 0 in N-.
Then the function

x(s) := g(s)[h(s) - y(l, s) zo] + (1- g(s)) [f(s) +y(-I, s) zo]

has the required properties.
For the other part of the proof, we can use the proof of [3, Lemma 5.3,

pp. 162-169] together with [3, Lemma 4.2]. I

A corollary of Theorem 4.1 is the following refinement of Theorem 3 of
Rivlin and Shapiro [12].
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COROLLARY 4.4. Let S be an n-dimensional compact manifold in IR n of
class ck, k E IN U {<X), w} and let y(l, '), y(-l, .) be in Ck(S) such that

v y(-1, s) + y(1, s) > O.
SES

In the case k = 1, we assume that oS = 0 or dim s = 1. Assumefurther there
exists a hyperplane tangent to the boundary of S at P? 3 distinct points,
which are contained in a (p - 2)-dimensional plane ofR n

•

Then there exists afunction x E Ck(S), which has two best approximations
from the linear space L of linear polynomials

If y(-1, . ) and y( 1, .) are constant functions and k"* 1, then the function x
can be chosen as the restriction of a real analytic function defined on R n.

Proof We denote by Tf the hyperplane {y E rp,n If(y) = O} tangent to
the boundary of S in the points of set

wheref(y) :=ao+ L:~=I avyv'
By a theorem of Radon [7], the set M o is the union of two disjoint subsets

M 1 and M _1 of M 0 such that the convex hull of M I and the convex hull of
M _I have a nonempty intersection. Then the set

is critical for the linear space L. By Lemma 2.3, each point of M o is a special
zero of the linear polynomial J, that is, f has special zeros for each s with
(1/, s) in the critical set M. Then, by Theorem 4.1 and Proposition 2.1, there
exists a function x E Ck(S) such that x has two best approximations from L.

Now assume y(-l, 0) and y(1, 0) are constant and k"* 1. In the proofs of
Lemma 4.2 and 4.3 we used for the construction of the above-mentioned
function x a mapping

(1)

The constructed function x was then a polynomial in the functions
Xl' X z,..., x q , and f In the case of an n-dimensional manifold in R n, we can
choose q = n and for the mapping (1) the identity map on S. Then the
construction leads to a polynomial in the coordinates YI'Yz'''''Yn which is
defined on R n and is, of course, analytic. I
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Remark. Rivlin and Shapiro [12] proved in the case k = 2, Y(I7, s) = 1, and
p = n + 1, the existence of a C<Xl-function x defined on IRn.

5. PROOF OF LEMMA 4.2

For the case k = 1 we prove the lemma in a more general situation. We
will assume that one of the following conditions is satisfied:

(1) OS=0;

(2) dimS=I;

(3) oSnN=0;

(4) For each sEN we have grad 'II(s) = O.

These conditions can be used to generalize Theorem 4.1.
It suffices to prove the existence of a function P in Ck(S) such that all

points in N are special zeros of P and

V P(s)~max{'II(s),O}.
SES

Then H:= P + '112 has the required properties.
As in the remark after Theorem 4.1, consider a function

of class Ck
, injective, and with Jacobian of rank n. For constructing the

function P, we define for each point S KO in N the function

Q

DKO(s):= L (xlt(s) - XIl (SK»2,
1t=1

and the function

JK/S):= V'll(S)2 + a~ODK/s)2

:= aKo'll(s) +aKoDK(s)

if k= 1,

if k *- 1,

where a KO (resp. aKO )' are real (resp. positive real) parameters, which will be
chosen later.

The functions J are of class Ck
• Only the case k = 1 needs a proof for

KO

the points S E S, where 'II(S)2 + a~ODKO(S) = 0, that is, for S = SKO' First let SKO

be a point in S\OS and let (W, qJ) be a chart with SKo E Wand Yo := qJ(SKJ

Then we have
oj 0 -1

KO qJ
o (Yo) = 0,
Yv

v = 1,2,... , n,
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and for Y *Yo, the estimate

1

0J"oO(fJ-' I

oYv (y)

= I (lII(S) 01ll;~-' (y)+a~oD,,/s) OD"~;v(fJ-' (y) )/VlII(s)Z+a~p~o(s)I

::;;; - V«olll 0 (fJ-'joYJ(Y))Z + a~/(oD"o 0 (fJ-'joyJ(y))Z,

v = 1,2,..., n, which is an application of the Cauchy-Schwartz inequality.
This estimate shows that

oJ 0 -1

"0 (fJ (y) --+ 0 ~lor y --+ Yo'
oYv

which proves the continuity of grad J"o in s"o E S\OS.
Now let s"o be in as and let (W, (fJ) be a chart such that s"o E Wand

(fJ(s"o) = O. Then the function J"oo (fJ-' is in a neighborhood of zero the
restriction of the continuous function r, which is defined by

r(Y"Yz,... ,Yn) :=J"o 0 (fJ-l(y"yz,""Yn) if Yl >0,

:= U"o 0 (fJ-l(O,Yz, ... ,Yn)

:= -J"o 0 (fJ-l(-Y"Yz, ... ,Yn) if Yl < O.

This function is of class C 1
• This is obvious for the points Y * O. To prove

the continuity of grad r(O) in Y = 0, we observe that

( I

0111 0 (fJ-l I )
grad r(O) = OYI (0),0,...,0.

Then, we define for each Y E IR n elements y and y by setting

and

:=Y

if Yl < 0,

if Yl ~O.

Like in the case s"o E S\OS, the use of the Cauchy-Schwartz inequality
yields the estimate

I o~;:) I ::;;; 2 V«0111 0 (fJ 'joyJ(Yl)Z +a~o«oD"o 0 (fJ 'joyJ(Yl)Z

+ V«olll 0 (fJ 'joYJ<YW + a~o«oD"o 0 (fJ 'joyJ(Y))Z,

which proves the continuity of orjoyv in the case or(O)/oyv = o.
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Consequently, JKO is a CI-function in the case k = 1, provided one of the
conditions (1), (3), or (4) is satisfied. To prove the case of dim S = 1, we
have only to consider (8rj8YI)(0) *- O. Then we have

[
fII ° cp-I(y) . (8f11 ° cp-lj8YI)(Y) ]

8F(y) _ +a~pKO 0 cp-I(Y)(8DKO ° cp-lj8YI)(Y)

8YI - V(fII ° cp-I(Y))2 + a~O(DKO ° cp-l(y))2 .

Dividing on the right-hand side numerator and denominator by Yl' we obtain

for Y ---> 0, which proves the continuity of 8rj8Yl also in the case
8F(0)j8YI *- O.

Consequently, JKo is also a CI-function in this case.
The aKo are chosen as follows: let (W, cp) be a chart with SKo E W such that

Yo = CP(SKo)' Then we set

We claim that we can choose real numbers aKO so large that

(2)

and that there exists a neighborhood UKO of SKo such that

V JKO(s)? fII(S).
SEUKO

(3)

v = 1,2,... , n, (J = 1,2,..., n.

Remark. Once we have proved this, then we can also choose the a K so
large, that for a suitable neighborhood UKO (we can assume that this is the
same neighborhood as in (3)), we have

V V JK(s)? 1.

The claims (2) and (3) are trivial for k = 1 and the claim (2) is also for
k *- 1 and grad JKO(SKO) = O.

Assume now k *- 1 and consider for the real numbers fJ = a KO (resp.
f3 = a KO - 1) the matrix

(

q 8x ° cp - 1 8x ° cp - 1

Co(fJ):= 2aKo .L I'a (Yo) . I'a (Yo)
1'=1 Yv Yo

a2f11ocp-l )+ fJ (Yo) ,aYvayu
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(

q ax ° rp - I ax ° rp - I )
B o :=. L 14

0
(Yo) . 14

ay
(Yo),

14= I Yv 0

v = 1,2,... , n, a = 1,2,... , n,

169

is positive definite, since B 0 can be written as a product A o' A J, where A 0 is
the Jacobian matrix

v = 1,2,... , n, f.i = 1,2,... , q,

which has rank n. We can choose a KO so large, that the matrix Co (fJ) is
positive definite for both values of p. To prove the claims (2) and (3) in the
case grad JKO(SKO) *" 0, we consider the second-order Taylor expansion of J KO
(resp. JKO - 1/1) at the point SKO:

(resp.

[ I

al/l ° rp - I I al/l ° rp - I ]
JKOorp-I(Y)_I/Iorp-l(y)= aYI (0) - aYI (0) YI

+ (y, CO(aKO - 1)y) + 0(11 YI1 2
)),

where we can assume Yo = O. Since the matrices CO(aK) and CO(a KO - 1) are
positive definite, there exists a neighborhood UKO of SKo such that

V JKO(s) >0
SEU'o\ls'oJ

and

V JKO(s) - I/I(s) ~ O.
seU/(o

Consider the set S I := S \ UK and let
o

and Do := min DK(s) > O.
seS I 0

Then we have for all aKO > Eo/Do and for all S E SI the estimate

aKoDK/s) + aKoI/I(s) ~ DoaKo - Eo> 0,

which proves the claims in the case grad I/I(SKO) *" O.

640/42/2-5
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To prove the claim (3) in the case grad J"o(s"o) = 0, we consider second­
order Taylor expansion of J"o - lIf at the point s"o:

J"oo tp-I(y) -llf 0 tp-I(y)

= (y - Yo, Co(a"o - 1)(y - Yo» + 0(11 y - Yo112)

Since the matrix Co(a"o - 1) is positive definite, there exists a neighborhood
U"o of s"o such that

y J"o(S)-lIf(S);;:'O.
SEU KO

Now define for each b >0 the function
K

Gb(s) := b n J,,(s),
,,=1

where K := #N. The function Gb is of class Ck and has the property

if S = SIC'

if S * SIC'

Next we will show that there is a real number b >0 such that

Y Gb(s);;:' lIf(S).
SES

If not, then there exist sequences (bj ) c IR and (Sb) C S such that

and

and such that

Y 1 < bj <bj+ 1

jEN

We claim that So is different from SIC' K = 1,2,... , K. By claim (3) and by
the remark after it, there is for each s"o in N a neighborhood U"o such that

Y J"o(s) - lIf(S) ;;:. 0,
SEU"O

and such that all functions J" with K * Ko satisfy in U"o the estimate J" ;;:. 1.
Then we have in U"o the estimate

K

G1(s) - lIf(S) = n J,,(s) -lIf(S);;:' J"O<s) -lIf(S);;:' O.
K=l
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Assume now that So = SKo' Then we have Sb
j
E U

KO
for j large enough.

Consequently, we have

0> Gb{Sb) -l/f(Sb)
J J J

>G1(Sb) -l/f(Sb) >0,
J J

which is a contradiction.
Consequently, there exists a compact neighborhood Uo of So and real

number a such that

SE l/o

For j sufficiently large we have Sb; E Uo and

bja >max l/f(s);
SE l/o

then we have

which is a contradiction.
Consequently, there exists a nonnegative number b such that

V P(s):=Gb(s»l/f(s);
SES

since Gb(s) >0, we have also P(s) >0 for all S E S. It is easy to see, that P
has the points of N as special zeros, which completes the proof.
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